Skip to content

Models

List of popular text-to-image generative models with their respective parameters and architecture overview

Publisher Model Version Size Diffusion Architecture Model Params Text Encoder(s) TE Params Auto Encoder License Release date
StabilityAI Stable Diffusion 1.5 2.28GB UNet 0.86B CLiP ViT-L 0.12B VAE OpenRAIL 2022 October
StabilityAI Stable Diffusion 2.1 2.58GB UNet 0.86B CLiP ViT-H 0.34B VAE OpenRAIL 2022 December
StabilityAI Stable Diffusion XL 6.94GB UNet 2.56B CLiP ViT-L + ViT+G 0.12B + 0.69B VAE OpenRAIL 2023 July
StabilityAI Stable Diffusion 3.0 Medium 15.14GB MMDiT 2.0B CLiP ViT-L + ViT+G + T5-XXL 0.12B + 0.69B + 4.76B 16ch VAE Proprietary 2024 June
StabilityAI Stable Diffusion 3.5 Medium 15.89GB MMDiT 2.25B CLiP ViT-L + ViT+G + T5-XXL 0.12B + 0.69B + 4.76B 16ch VAE Proprietary 2024 October
StabilityAI Stable Diffusion 3.5 Large 26.98GB MMDiT 8.05B CLiP ViT-L + ViT+G + T5-XXL 0.12B + 0.69B + 4.76B 16ch VAE Proprietary 2024 October
StabilityAI Stable Cascade Medium 11.82GB Multi-stage UNet 1.56B + 3.6B CLiP ViT-G 0.69B 42x VQE Proprietary 2024 February
StabilityAI Stable Cascade Lite 4.97GB Multi-stage UNet 0.7B + 1.0B CLiP ViT-G 0.69B 42x VQE Proprietary 2024 February
Black Forest Labs Flux 1 Schnell 32.93GB MMDiT 11.9B CLiP ViT-L + T5-XXL 0.12B + 4.76B 16ch VAE Apache 2.0 2024 August
Black Forest Labs Flux 1 Dev 32.93GB MMDiT 11.9B CLiP ViT-L + T5-XXL 0.12B + 4.76B 16ch VAE Proprietary 2024 August
Black Forest Labs Flux 1 Kontext-Dev 32.93GB MMDiT 11.9B CLiP ViT-L + T5-XXL 0.12B + 4.76B 16ch VAE Proprietary 2025 June
Black Forest Labs Flux 1 Krea-Dev 32.93GB MMDiT 11.9B CLiP ViT-L + T5-XXL 0.12B + 4.76B 16ch VAE Proprietary 2025 July
lodestones Chroma 48 26.84GB MMDiT 8.9B CLiP ViT-L + T5-XXL 0.12B + 4.76B 16ch VAE Apache 2.0 2025 July
Ostris Flex 1 Alpha 25.65GB MMDiT 8.16B CLiP ViT-L + T5-XXL 0.12B + 2.95B 16ch VAE Apache 2.0 2025 January
Ostris Flex 2 Preview 25.65GB MMDiT 8.16B CLiP ViT-L + T5-XXL 0.12B + 2.95B 16ch VAE Apache 2.0 2025 April
FreePik F-Lite 19.81GB MMDiT 9.8B T5-XXL 2.95B 16ch VAE OpenRAIL 2025 May
FreePik F-Lite Texture 19.81GB MMDiT 9.8B T5-XXL 2.95B 16ch VAE OpenRAIL 2025 May
FreePik F-Lite 7B 13.89GB MMDiT 7B T5-XXL 2.95B 16ch VAE OpenRAIL 2025 May
NVLabs Sana 1.5 1.6B 9.49GB MMDiT 1.60B Gemma2 2.61B DC-AE Proprietary 2025 March
NVLabs Sana 1.5 4.8B 15.58GB MMDiT 4.72B Gemma2 2.61B DC-AE Proprietary 2025 March
NVLabs Sana 1.0 1600M 12.63GB MMDiT 1.60B Gemma2 2.61B DC-AE Proprietary 2024 November
NVLabs Sana 1.0 600M 7.51GB MMDiT 0.59B Gemma2 2.61B DC-AE Proprietary 2024 November
nVidia Cosmos-Predict2 T2I 2B 13.32GB MMDiT 1.96B T5-XXL 4.86 WAN-VAE Proprietary 2025 June
nVidia Cosmos-Predict2 T2I 14B 37.36GB MMDiT 14.26B T5-XXL 4.86 WAN-VAE Proprietary 2025 June
FAL AuraFlow 0.2 31.90GB MMDiT 6.8B UMT5 12.1B VAE Apache 2.0 2024 July
FAL AuraFlow 0.3 31.90GB MMDiT 6.8B UMT5 12.1B VAE Apache 2.0 2024 August
AlphaVLLM Lumina Next SFT 8.67GB DiT 1.7B Gemma 2.5B VAE Apache 2.0 2024 June
AlphaVLLM Lumina 2 20.75GB DiT 2.61B Gemma-2 2.61B 16ch VAE Apache 2.0 2025 January
PixArt Alpha XL 2 21.3GB DiT 0.61B T5-XXL 4.76B VAE OpenRAIL 2023 November
PixArt Sigma XL 2 21.3GB DiT 0.61B T5-XXL 4.76B VAE OpenRAIL 2024 April
Segmind SSD-1B 8.72GB UNet 1.33B CLiP ViT-L + ViT+G 0.12B + 0.69B VAE Apache 2.0 2023 October
Segmind Vega 6.43GB UNet 0.75B CLiP ViT-L + ViT+G 0.12B + 0.69B VAE Apache 2.0 2023 November
Segmind Tiny 1.03GB UNet 0.32B CLiP ViT-L 0.12B VAE OpenRAIL 2023 July
Thu-ML UniDiffuser v1 5.37GB U-ViT 0.95B CLiP ViT-L + CLiP ViT-B 0.12B + 0.16B VAE AGPL 3 2023 May
Kwai Kolors 17.40GB UNnet 2.58B ChatGLM 6.24B VAE Apache 2.0 2024 July
PlaygroundAI Playground 1.0 4.95GB UNet 0.86B CLiP ViT-L 0.12B VAE ? 2023 December
PlaygroundAI Playground 2.x 13.35GB UNet 2.56B CLiP ViT-L + ViT+G 0.12B + 0.69B VAE Proprietary 2023 December
Tencent HunyuanDiT 1.2 14.09GB DiT 1.5B BERT + T5-XL 3.52B + 1.67B VAE Proprietary 2024 May
Warp AI Wuerstchen 12.16GB Multi-stage UNet 1.0B + 1.05B CLiP ViT-L + ViT+G 0.12B + 0.69B 42x VQE MIT 2023 August
Kandinsky Kandinsky 2.1 5.15GB Unet 1.25B CLiP ViT-G 0.69B VQ Apache 2.0 2023 April
Kandinsky Kandinsky 2.2 5.15GB Unet 1.25B CLiP ViT-G 0.69B VQ Apache 2.0 2023 July
Kandinsky Kandinsky 3.0 27.72GB Unet 3.05B T5-XXXL 8.72B VQ Apache 2.0 2023 November
Thudm CogView 3 Plus 24.96GB DiT 2.85B T5-XXL 4.76B VAE Apache 2.0 2024 October
Thudm CogView 4 30.39GB DiT 6.37B GLM-4 9.40B VAE Apache 2.0 2025 March
IDKiro SDXS 2.05GB UNet 0.32B CLiP ViT-L 0.12B VAE OpenRAIL 2024 March
Open-MUSE aMUSEd 256 3.41GB ViT 0.60B CLiP ViT-L 0.12B VQ OpenRAIL 2023 December
Koala Koala 700M 6.58GB UNet 0.78B CLiP ViT-L + ViT+G 0.12B + 0.69B VAE Proprietary 2024 January
Thu-ML UniDiffuser v1 5.37GB U-ViT 0.95B CLiP ViT-L + CLiP ViT-B 0.12B + 0.16B VAE aGPL v3 2023 May
Salesforce BLIP-Diffusion 7.23GB UNet 0.86B CLiP ViT-L + BLiP-2 0.12B + 0.49B VAE BSD 3 2023 July
DeepFloyd IF M 12.79GB Multi-stage UNet 0.37B + 0.46B T5-XXL 4.76B Pixel Proprietary 2023 April
DeepFloyd IF L 15.48GB Multi-stage UNet 0.61B + 0.93B T5-XXL 4.76B Pixel Proprietary 2023 April
MeissonFlow Meissonic 3.64GB DiT 1.18B CLiP ViT-H 0.35B VQ Apache 2.0 2024 October
VectorSpaceLab OmniGen v1 15.47GB Transformer 3.76B Phi-3 0 VAE MIT 2024 October
VectorSpaceLab OmniGen v2 30.50GB Transformer 3.97B Qwen-VL-2.5 3.75B VAE Apache 2.0 2025 June
HiDream-AI HiDream I1 Fast/Dev/Full 42.71 GB + 15.69 MMDiT 17.10B CLiP ViT-L + ViT+G + T5-XXL + LLama-3.1-8B 0.12B + 0.69B + 2.95B + 4.54B 16ch VAE MIT 2025 April
Wan-AI WAN 2.1 1.3B 27.72GB MMDiT 1.42xB UMT5-XXL 5.68B 16ch VAE Apache 2.0 2025 February
Wan-AI WAN 2.1 14B 78.52GB MMDiT B UMT5-XXL 14.28B 16ch VAE Apache 2.0 2025 February
Bria Bria 3.2 18.66GB MMDiT 3.78B T5-XXL 4.76B 16ch VAE Proprietary 2025 June
Alibaba Qwen-Image 56.10GB MMDiT 20.43B QWen-2.5 8.29B Apache 2.0 2025 August

Notes

  • Created using SD.Next built-in model analyzer
  • Number of parameters is proportional to model complexity and ability to learn
    Quality of generated images is also influenced by training data and duration of training
  • Size refers to original model variant in 16bit precision where available
    Quantized variations may be smaller
  • Distilled variants are not included as typical goal-distilling does not change underlying model params
    e.g. Turbo/LCM/Hyper/Lightning/etc. or even Dev/Schnell