Skip to content

SDnext Parameters Guide

This guide documents generation parameters available in SDnext. This guide does not cover mostly static system settings
Parameters listed can be used in the extra field of styles
Parameters from the "Settings" sections (like advanced sampler or postprocessing options) can be used in the override_settings dictionary for per-generation changes

Table of Contents

Understanding Parameter Terminology

This section helps you understand the different terms used throughout the SDnext Processing Parameters Guide. Here’s a breakdown:

Type Use For Example UI Label
key Identifier name for the parameter, before the colon prompt, seed, width
str Text or labels "portrait, masterpiece"
int Whole numbers 20, 512
float Numbers with decimals 0.5, 7.5
bool On/Off toggles True, False
list Multiple values ["style1", "style2"]
Dict Key-value settings {key: value}
Any Flexible input types, context dependent image.png, #FFAA00, True

Base Parameters

Parameter Type Default Details / Syntax Description UI Label
sd_model_checkpoint str Varies Values: List of available checkpoint models. The primary (base) model used for image generation. Base model
sd_unet str "Default" Values: List of available UNET models. Specifies a custom UNET model to be used instead of the one packaged with the base model. unet model
prompt str "" Syntax: prompt: your text here The positive text prompt describing what you want to generate. This is the main instruction that tells the AI what image to create. Prompt
negative_prompt str "" Syntax: negative_prompt: bad quality, blurry, extra fingers Text describing what you want to avoid in the generation. Common negatives include unwanted elements, quality issues, or artistic styles you want to exclude. Negative prompt
seed int -1 Values: -1 (random), or any positive integer
Syntax: seed: 12345
Random seed for reproducible results. Using the same seed with identical settings will generate the same image. -1 generates a random seed each time. Seed
subseed int -1 Values: -1 (random), or any positive integer
Syntax: subseed: 67890
Secondary seed for additional variation control. Works together with subseed_strength to add controlled randomness to your generation. Variation
subseed_strength float 0 Range: 0.0 to 1.0
Syntax: subseed_strength: 0.15
How much the subseed affects the generation (0 = no effect, 1 = maximum effect). Useful for creating slight variations of the image with the same seed. Variation strength
seed_resize_from_h int -1 Values: -1 (disabled), or positive integer
Syntax: seed_resize_from_h: 512
Original height for seed resizing. This maintains noise patterns when changing resolution, useful when upscaling while keeping similar composition. Resize seed from height
seed_resize_from_w int -1 Values: -1 (disabled), or positive integer
Syntax: seed_resize_from_w: 512
Original width for seed resizing. Works with seed_resize_from_h to maintain consistency across resolution changes. Resize seed from width
batch_size int 1 Values: 1 or higher
Syntax: batch_size: 4
Number of images to generate simultaneously. Higher values use more GPU memory but are more efficient than generating images one by one. Batch size
n_iter int 1 Values: 1 or higher
Syntax: n_iter: 5
Number of generation iterations (batches) to run. If batch_size is 4 and n_iter is 5, you'll get 20 images total. Batch count
width int 1024 Values: Multiples of 8
Syntax: width: 1280
Image width in pixels. Must be divisible by 8. For best results use resolutions recommended for the model you're using. Width
height int 1024 Values: Multiples of 8
Syntax: height: 768
Image height in pixels. Must be divisible by 8. Consider aspect ratio for best results. Height

VAE Parameters

Controls the Variational Autoencoder (VAE) used for encoding and decoding images to and from latent space.

Parameter Type Default Details / Syntax Description UI Label
sd_vae str "Automatic" Values: "Automatic", "None", or a list of available VAE models. Selects the VAE model. "Automatic" will try to find a matching VAE for the main model. VAE model
tiling bool False Syntax: tiling: True Enable tiled VAE decoding for seamless textures. Perfect for creating repeating patterns or textures that tile without visible seams. Tiling
vae_type str "Full" Values: "Full", "Tiny", "Remote"
Syntax: vae_type: Tiny
What type of VAE will be used for VAE Decode step at the end of generation. "Full" uses full VAE provided for the model, "Tiny" uses TAESD, a smaller VAE version that provides memory savings but lower quality, "Remote" utilises Huggingface remote VAE service to decode latent images on Huggingface servers instead of locally.

Sampler Parameters

Parameter Type Default Details / Syntax Description UI Label
sampler_name str None Values: "Euler", "Euler a", "DPM++ 2M", etc.
Syntax: sampler_name: DPM++ 2M Karras
Algorithm used for image generation. Different samplers can produce different styles and qualities. Sampling method
steps int 20 Range: 1 to 150 (typical)
Syntax: steps: 30
Number of denoising steps. More steps generally mean better quality but slower generation. 20-50 is typical, with diminishing returns above 50. Settings may vary depending on sampler chosen. Steps
eta float None Range: 0.0 to 1.0
Syntax: eta: 0.67
Noise multiplier for samplers that support it (like DDIM). Adds randomness to deterministic samplers. 0 = fully deterministic, 1 = maximum noise. noise multiplier (eta)
eta_noise_seed_delta int 0 Syntax: eta_noise_seed_delta: 31337 An additional seed that influences the noise (eta) in ancestral samplers, allowing for variations without changing the main seed. Essentially adds 31337 to your seed. Only useful when used with originally leaked NovelAI models to replicate images. noise seed delta (eta)
scheduler_eta float 1.0 Range: 0.0 to 1.0 Noise multiplier (eta) for ancestral samplers. 0.0 is deterministic, 1.0 is fully stochastic. noise multiplier (eta)
schedulers_solver_order int 0 Range: 0 to 5 The order of the solver for certain schedulers (e.g., DPM). Higher orders can be more accurate but slower. sampler order
schedulers_use_loworder bool True Values: True, False For some schedulers, uses a simpler, faster solver for the final steps of generation, also generally stabilising the output. use simplified solvers in final steps
schedulers_prediction_type str "default" Values: 'default', 'epsilon', 'sample', 'v_prediction' Overrides the model's configured prediction type (what the model is trained to predict at each step). Frequently used with velocity prediction (V-Pred) models. prediction method
schedulers_sigma str "default" Values: 'default', 'karras', 'exponential', 'polyexponential' The algorithm used to calculate the noise schedule (sigmas). 'karras' is a popular choice. sigma method
schedulers_beta_schedule str "default" Values: 'default', 'linear', 'scaled_linear', ... Defines how the noise level changes over time (the beta schedule). beta schedule
schedulers_use_thresholding bool False Values: True, False Enables dynamic thresholding to prevent oversaturation and artifacts, especially at high CFG scales. use dynamic thresholding
schedulers_timestep_spacing str "default" Values: 'default', 'linspace', 'leading', 'trailing' How the timesteps are distributed across the generation process. timestep spacing
schedulers_timesteps str '' Syntax: "1000, 999, ..." A comma-separated list of exact timesteps to use, overriding all other timestep settings. timesteps override
schedulers_rescale_betas bool False Values: True, False Also known as Zero terminal SNR (ZSNR). Rescales the beta schedule to have a zero signal-to-noise ratio at the end, which can improve sample quality. Frequently used with velocity prediction (V-Pred) models. rescale betas with zero terminal snr
schedulers_beta_start float 0.0 Range: 0.0 to 1.0 The starting value for a custom beta schedule. beta start
schedulers_beta_end float 0.0 Range: 0.0 to 1.0 The ending value for a custom beta schedule. beta end
schedulers_timesteps_range int 1000 Range: 250 to 4000 The total number of discrete timesteps in the full diffusion process from which the sampler will draw. timesteps range
schedulers_shift float 3.0 Range: 0.1 to 10.0 Sampler shift value for samplers. Controls the timing of noise removal during sampling - positive values do more denoising early (better details), negative values do more denoising late (better structure), zero is the default schedule. sampler shift
schedulers_dynamic_shift bool False Values: True, False Enables dynamic sampler shifting, applying timestep shifting on-the-fly based on the image resolution. sampler dynamic shift
schedulers_sigma_adjust float 1.0 Range: 0.5 to 1.5 Sigma adjustment value for samplers.
schedulers_sigma_adjust_min float 0.2 Range: 0.0 to 1.0 Sigma adjustment start value for samplers.
schedulers_sigma_adjust_max float 0.8 Range: 0.0 to 1.0 Sigma adjustment end value for samplers.
uni_pc_variant str "bh2" Values: "bh1", "bh2", "vary_coeff" Specifies the variant of the UniPC sampler to use.
uni_pc_skip_type str "time_uniform" Values: "time_uniform", "time_quadratic", "logSNR" The skip type for the UniPC sampler, affecting how it moves through timesteps.

Guidance Parameters

Parameter Type Default Details / Syntax Description UI Label
cfg_scale float 6.0 Range: 1.0 to 30.0
Syntax: cfg_scale: 7.5
Classifier-Free Guidance scale. Higher values follow your prompt more closely but can cause oversaturation. 4-12 is typical for most uses. guidance scale
cfg_end float 1.0 Range: 0.0 to 1.0
Syntax: cfg_end: 0.7
When to stop applying CFG during generation (1.0 = full generation). Lower values can produce more creative results by reducing guidance in later steps. Guidance End
diffusers_guidance_rescale float 0.0 Range: 0.0 to 1.0
Syntax: diffusers_guidance_rescale: 0.3
Rescale guidance for diffusers to prevent oversaturation when using high CFG values. Helps maintain color balance. Rescale guidance
pag_scale float 0.0 Range: 0.0 to 5.0
Syntax: pag_scale: 2.0
Perturbed Attention Guidance scale for enhanced details. Improves fine details without affecting overall composition. Attention guidance
pag_adaptive float 0.5 Range: 0.0 to 1.0
Syntax: pag_adaptive: 0.8
Adaptive strength for PAG. Controls how much the guidance adapts to different image regions. Adaptive scaling

Text Encoder Parameters

Controls the models and methods used to interpret the text prompt.

Parameter Type Default Details / Syntax Description UI Label
clip_skip int 1 Range: 1 to 12
Syntax: clip_skip: 2
Skip last N layers of CLIP model. Only affects models which use CLIP as their Text Encoder. Values 1 or 2 used with SD1.5, should be left at default 1 with SDXL and other models. More here: Clip skip Clip skip
clip_skip_enabled bool False Values: True, False Enables the clip_skip parameter, which skips final layers of the CLIP model.
sd_text_encoder str 'Default' Values: List of available Text Encoder models. Specifies a custom Text Encoder model instead of the one packaged with the base model. text encoder model
prompt_attention str "native" Values: "native", "compel", "xhinker", "a1111", "fixed" Selects the parser for handling prompt weighting and attention syntax. prompt processor

Style Parameters

Parameter Type Default Details / Syntax Description UI Label
styles List[str] [] Syntax: styles: [photorealistic, dramatic lighting] List of style names to apply to the prompt. These are predefined styles that modify both prompts and parameters. Styles

Enhancement Parameters

Parameter Type Default Details / Syntax Description UI Label
hidiffusion bool False Syntax: hidiffusion: True Enable HiDiffusion for improved high-resolution generation. Helps maintain quality and coherence at resolutions higher than the model is capable of natively. HiDiffusion
do_not_reload_embeddings bool False Syntax: do_not_reload_embeddings: True Skip reloading embeddings (performance optimization). Useful when running multiple generations with the same embeddings.
enhance_prompt bool False Syntax: enhance_prompt: True Automatically enhance/expand the prompt using AI. Adds more descriptive details to simple prompts for better results. enhance prompt

Face Restoration Parameters

Parameter Type Default Details / Syntax Description UI Label
restore_faces bool False, Values: False, codeformer, gfpgan
Syntax: restore_faces: True
Apply face restoration post-processing using Codeformer or GFPGAN neural network. Automatically detects and enhances faces in the image for better facial details. Not the same as detailer, generally inferior, legacy option.
face_restoration_model str "None" Values: 'None', 'CodeFormer', 'GFPGAN', etc. Selects the model to use for the face restoration post-processing step.
code_former_weight float 0.2 Range: 0.0 to 1.0 Blending strength for CodeFormer. 0 shows the original, 1 shows the fully restored face. CodeFormer weight parameter

Detailer Parameters

Parameter Type Default Details / Syntax Description UI Label
detailer_enabled bool False Syntax: detailer_enabled: True Enable automatic detail enhancement pass. Runs after first and second pass, uses detection models for automatic detection and masking. Supports custom YOLO detection models for detection of various objects on the image. Enable detailer pass
detailer_prompt str '' Syntax: detailer_prompt: highly detailed, sharp focus Specific prompt for detail enhancement. If used, overrides main positive prompt during detail pass for targeted improvements. Detailer prompt
detailer_negative str '' Syntax: detailer_negative: blurry, low quality Negative prompt for detail enhancement. If used, overrides main negative prompt during detail pass. Detailer negative prompt
detailer_steps int 10 Range: 1 to 50
Syntax: detailer_steps: 15
Number of steps for detail enhancement. Can be set lower than main steps since it's refining existing details. Detailer steps
detailer_strength float 0.3 Range: 0.0 to 1.0
Syntax: detailer_strength: 0.5
Strength of detail enhancement. Higher values change the image more dramatically during detailing pass. Detailer strength
detailer_model str "Detailer" Values: List of detailer names Selects the primary detailer model. Detailer models
detailer_classes str "" Syntax: "class1, class2" A comma-separated list of object classes to detect and detail (e.g., "face, hand"). Detailer classes
detailer_conf float 0.6 Range: 0.0 to 1.0 The minimum confidence score for an object detection to be considered valid for detailing. Min confidence
detailer_max int 2 Range: 1 to 10 The maximum number of detected objects to process with the detailer. Max detected
detailer_iou float 0.5 Range: 0.0 to 1.0 Intersection over Union (IoU) threshold to filter out overlapping detections. Max overlap
detailer_sigma_adjust float 1.0 Range: 0.0 to 1.0 Adjusts the sigma value for the detailer's sampler.
detailer_sigma_adjust_max float 1.0 Range: 0.0 to 1.0 The end sigma adjustment value for the detailer's sampler.
detailer_min_size float 0.0 Range: 0.1 to 1.0 The minimum relative size an object must have to be detailed. Min size
detailer_max_size float 1.0 Range: 0.1 to 1.0 The maximum relative size an object can have to be detailed. Max size
detailer_padding int 20 Range: 0 to 100 Extra padding (in pixels) to add around the detected object's mask before inpainting. Edge padding
detailer_blur int 10 Range: 0 to 100 The blur radius (in pixels) for the edge of the detailer's mask to create a smoother blend. Edge blur
detailer_models List[str] ['face-yolo8n'] Values: List of YOLO models The specific YOLO detection model or models to be used by the detailer. Detailer models

HDR Correction Parameters

Parameter Type Default Details / Syntax Description UI Label
hdr_mode int 0 Values: 0 (disabled), 1, 2, 3
Syntax: hdr_mode: 1
HDR processing mode. Each mode applies different tone mapping algorithms for enhanced dynamic range. correction mode
hdr_brightness float 0 Range: -1.0 to 1.0
Syntax: hdr_brightness: 0.2
Brightness adjustment. Positive values brighten the image, negative values darken it. brightness
hdr_color float 0 Range: -1.0 to 1.0
Syntax: hdr_color: 0.3
Color/saturation adjustment. Positive values increase color vibrancy, negative values reduce it. color
hdr_sharpen float 0 Range: 0.0 to 2.0
Syntax: hdr_sharpen: 0.5
Sharpening strength. Enhances edge details and overall image crispness. sharpen
hdr_clamp bool False Syntax: hdr_clamp: True Clamp HDR values to prevent overflow. Prevents extreme bright or dark areas from clipping. HDR Clamp
hdr_boundary float 4.0 Syntax: hdr_boundary: 3.5 HDR boundary threshold. Controls the range of HDR effect application. hdr range
hdr_threshold float 0.95 Range: 0.0 to 1.0
Syntax: hdr_threshold: 0.9
HDR activation threshold. Determines which brightness levels trigger HDR processing. threshold
hdr_maximize bool False Syntax: hdr_maximize: True Maximize HDR effect. Applies the strongest possible HDR enhancement. HDR Maximize
hdr_max_center float 0.6 Range: 0.0 to 1.0
Syntax: hdr_max_center: 0.5
Center point for HDR maximization. Defines the brightness level that receives maximum enhancement.
hdr_max_boundary float 1.0 Syntax: hdr_max_boundary: 0.8 Boundary for HDR maximization. Sets the range around the center point for maximum effect.
hdr_color_picker str None Syntax: hdr_color_picker: #FF5500 Color reference for HDR tinting. Applies a color cast to the HDR effect using hex color codes.
hdr_tint_ratio float 0 Range: 0.0 to 1.0
Syntax: hdr_tint_ratio: 0.2
Strength of HDR color tinting. Controls how much the selected color affects the image.

Image-to-Image Parameters

Parameter Type Default Details / Syntax Description UI Label
init_images list None Syntax: init_images: [image1.png] List of input images for img2img/inpainting. These serve as the starting point for transformation. optional init image or video
resize_mode int 0 Values: 0 (Just resize), 1 (Crop and resize), ...
Syntax: resize_mode: 1
How to handle size mismatch between input and output. Choose based on whether you want to preserve aspect ratio or fill the canvas. See more: Resize modes resize mode
resize_name str 'None' Values: Upscaler names ("Lanczos", "ESRGAN_4x")
Syntax: resize_name: ESRGAN_4x
Upscaler to use for resizing. Different upscalers excel at different content types. Upscaler
resize_context str 'None' Values 'None, Add with forward", "Remove with forward", "Add with backward", "Remove with backward
Syntax: resize_context: Add with forward
Advanced image resizing technique that intelligently adds or removes content from images while preserving important visual elements. See more: Context-aware scaling context
denoising_strength float 0.3 Range: 0.0 to 1.0
Syntax: denoising_strength: 0.75
How much to change the input image. 0 = no change, 1 = complete reimagining. 0.3-0.7 is typical for variations. Denoising strength
scale_by float 1.0 Range: 0.1 to 8.0
Syntax: scale_by: 2.0
Scale factor for input image. 2.0 doubles the size, 0.5 halves it. Scale by
img2img_background_color str "#ffffff" Syntax: "#RRGGBB" Sets the background color used to fill transparent areas of an input image. resize background color
image_cfg_scale float None Range: 0.0 to 3.0
Syntax: image_cfg_scale: 1.5
Image conditioning strength (for ControlNet/IP-Adapter). Controls how closely to follow the input image structure. guidance scale

High-Resolution (HiRes) Parameters

Parameter Type Default Details / Syntax Description UI Label
enable_hr bool False Syntax: enable_hr: True Enable high-resolution second pass. Generates at lower resolution first, then upscales and optionally refines. Enable refine pass
hr_sampler_name str None Values: Same as sampler_name
Syntax: hr_sampler_name: UniPC
Sampler for high-resolution pass. Can be different from primary sampler for specialized effects during upscaling when using HiRes. Refine sampler
hr_scale float 2.0 Range: 1.0 to 4.0
Syntax: hr_scale: 2.5
Upscale factor for hires pass. 2.0 means the final image will be twice the width and height of the initial generation. scale
hr_upscaler str None Values: "None", "Lanczos", "ESRGAN_4x", etc.
Syntax: hr_upscaler: R-ESRGAN 4x+
Upscaler algorithm for hires pass. Each has strengths for different image types and styles. Can be combined with HiRes to upscale the image and then refine it. Upscaler
hr_second_pass_steps int 0 Values: 0 (use primary steps), or 1-150
Syntax: hr_second_pass_steps: 20
Number of steps for hires pass. Often fewer steps are needed since it's refining an existing image. Hires steps
hr_resize_x int 0 Values: 0 (use scale), or target width
Syntax: hr_resize_x: 2048
Target width for hires (overrides scale). Use for exact output dimensions rather than relative scaling. Resize width
hr_resize_y int 0 Values: 0 (use scale), or target height
Syntax: hr_resize_y: 1536
Target height for hires (overrides scale). Pairs with hr_resize_x for exact dimensions. Resize height
hr_denoising_strength float 0.0 Range: 0.0 to 1.0
Syntax: hr_denoising_strength: 0.4
Denoising strength for hires pass. Lower values preserve more detail from upscale, higher values allow more creative changes. Denoising strength
firstphase_width int 0 Values: 0 (disabled), or initial width
Syntax: firstphase_width: 512
Override initial generation width. Useful for controlling the first pass resolution independently.
firstphase_height int 0 Values: 0 (disabled), or initial height
Syntax: firstphase_height: 512
Override initial generation height. Works with firstphase_width for custom initial dimensions.

Inpainting Parameters

Parameter Type Default Details / Syntax Description UI Label
mask Any None Syntax: mask: mask_image.png Mask image for inpainting. White areas will be regenerated, black areas will be preserved. Mask
mask_blur int 4 Range: 0 to 64
Syntax: mask_blur: 8
Blur radius for mask edges. Higher values create smoother transitions between inpainted and original areas. Mask blur
inpaint_full_res bool False Syntax: inpaint_full_res: True Inpaint at full resolution of masked area only. Useful for detailed work on small areas without processing the entire image. inpaint masked only
inpaint_full_res_padding int 0 Range: 0 to 256
Syntax: inpaint_full_res_padding: 32
Padding around masked area for full res inpainting. Helps blend the inpainted area with surroundings. item padding
inpainting_mask_invert int 0 Values: 0 (normal), 1 (inverted)
Syntax: inpainting_mask_invert: 1
Invert the mask (swap inpaint/keep areas). Useful when your mask highlights what to keep rather than what to change. invert mask
img2img_color_correction bool False Values: True, False When enabled, applies color correction to the inpainted area to better match the original image. apply color correction
mask_apply_overlay bool True Values: True, False Renders the inpaint mask as a transparent overlay in the UI for easier visualization. apply mask as overlay

Refiner Parameters

Parameter Type Default Details / Syntax Description UI Label
sd_model_refiner str 'None' Values: 'None' or a list of available checkpoint models. The refiner model used for the final steps of generation to add details. Typically used with SDXL models. Refiner model
refiner_steps int 5 Range: 0 to 50
Syntax: refiner_steps: 10
Number of steps for refiner model. Refiner models add final details and polish to images. Refiner steps
refiner_start float 0 Range: 0.0 to 1.0
Syntax: refiner_start: 0.8
When to switch to refiner (0.8 = at 80% of steps). Earlier switching gives refiner more influence over the final image. Refiner start
refiner_prompt str '' Syntax: refiner_prompt: masterpiece, best quality Override main positive prompt for refiner. Allows specialized prompting for the refinement stage. Refine Prompt
refiner_negative str '' Syntax: refiner_negative: low quality, blurry Override main negative prompt for refiner. Refine negative prompt
hr_refiner_start float 0 Range: 0.0 to 1.0
Syntax: hr_refiner_start: 0.85
When to switch to refiner in hires pass. Can be different from primary refiner_start for specialized workflows. Refiner start

Postprocessing Parameters

These settings control postprocessing operations that run after the main image generation is complete.

Parameter Type Default Details / Syntax Description UI Label
postprocessing_enable_in_main_ui List[str] [] Values: List of script names Selects which postprocessing scripts (like upscalers or face restoration) to run after generation.
postprocessing_operation_order List[str] [] Values: List of script names Defines the execution order of the selected postprocessing scripts. postprocessing operation order

Save Options

Parameter Type Default Details / Syntax Description UI Label
outpath_samples str None Syntax: outpath_samples: outputs/my_project/ Custom output directory for images. Helps organize outputs for different projects or styles. Images folder
outpath_grids str None Syntax: outpath_grids: outputs/grids/ Custom output directory for grids. Separate location for batch result grids. Grids folder
do_not_save_samples bool False Syntax: do_not_save_samples: True Skip saving individual images. Useful when only the grid matters or for preview runs.
do_not_save_grid bool False Syntax: do_not_save_grid: True Skip saving image grid. Useful when generating single images or when individual files are preferred.

Script Parameters

Parameter Type Default Details / Syntax Description UI Label
script_args list [] Syntax: script_args: [arg1, arg2, arg3] Arguments passed to active scripts/extensions. Format depends on the specific script being used.

Override Parameters

Parameter Type Default Details / Syntax Description UI Label
override_settings Dict[str, Any] {} Syntax: override_settings: {CLIP_stop_at_last_layers: 2} Temporarily override global settings for this generation. Settings revert after generation completes. Override settings
override_settings_restore_afterwards bool True Syntax: override_settings_restore_afterwards: False Restore original settings after generation. Set to False to make overrides permanent.

Video Processing Parameters

Parameter Type Default Details / Syntax Description UI Label
prompt_template str None Syntax: prompt_template: frame {frame_num}: {base_prompt} Template for animated prompts across frames. Allows dynamic prompt changes throughout video generation.
frames int 1 Values: 1 or higher
Syntax: frames: 30
Number of video frames to generate. More frames = longer video but longer generation time. frames
scheduler_shift float 0.0 Syntax: scheduler_shift: 0.5 Shift scheduler timing for animation effects. Creates motion and transformation effects between frames. sampler shift
vae_tile_frames int 0 Syntax: vae_tile_frames: 8 Number of frames to tile in VAE for memory efficiency. Helps process longer videos on limited GPU memory. tile frames

Clip skip

TODO

Resize modes

TODO

Context aware scaling

TODO

Notes

  1. Memory Considerations: Higher batch_size, steps, and resolution require more GPU memory
  2. Quality vs Speed: More steps generally improve quality but increase generation time
  3. Compatibility: Some parameters may not work with all models or samplers
  4. Defaults: Default values are optimized for SDXL models at 1024x1024 resolution